• Users Online: 68
  • Print this page
  • Email this page


 
 
Table of Contents
ORIGINAL ARTICLE
Year : 2020  |  Volume : 22  |  Issue : 2  |  Page : 57-62

Nasal bone measurements in the middle eastern population based on radiological analysis: A cross-sectional retrospective study


1 Department of Otolaryngology, Imam Abdulrahman Bin Faisal University, King Fahad Hospital University, Dammam, Saudi Arabia
2 Department of Plastic Surgery, Imam Abdulrahman Bin Faisal University, King Fahad Hospital University, Dammam, Saudi Arabia
3 Department of Radiology, Imam Abdulrahman Bin Faisal University, King Fahad Hospital University, Dammam, Saudi Arabia

Date of Submission10-Apr-2020
Date of Decision24-May-2020
Date of Acceptance10-Jun-2020
Date of Web Publication30-Dec-2020

Correspondence Address:
Dr. Salma Saud Al Sharhan
Department of Otolaryngology, Imam Abdulrahman Bin Faisal University, King Fahad Hospital University, Dammam
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/SJOH.SJOH_10_20

Rights and Permissions
  Abstract 


Objectives: Performing septorhinoplasty surgery requires comprehensive knowledge of nasal morphology. The effect of racial differences on nasal bone morphology has gathered increasing interest. However, previous studies have primarily focused on the Western population with a few studies assessing the Middle Eastern participants. We aimed to provide itemized measurements of the nasal bone morphology as the baseline data for the Middle Eastern population. Study Design: This was a retrospective cross-sectional single-center study. Materials and Methods: We included patients who underwent maxillofacial computed tomography between February and August 2019 at King Fahad Hospital of University. The Kolmogorov–Smirnov test was used to check the assumption of data normality. The Mann–Whitney U-test and Student's t-test were used for nonsymmetrical and symmetrical variables, respectively. One-way analysis of variance was used for symmetrical data. Chi-square test was used to compare the categorical variables. Results: We included 276 cases. The mean right and right nasal bone length was significantly larger in men than in women. Moreover, patients with severe nasal septal deviation angle had significantly lower left and right medial bone thickness, as well as the internasal angle. Conclusion: There were significant between-sex differences in the nasal bone morphology. There was no side predilection for deviated nasal septum and nasal bone thickness. However, severe cases of deviated nasal septum presented a lower medial nasal bone thickness, which could be attributed to ethnic variations in the Middle Eastern population.

Keywords: Deviated nasal septum, internasal angle, Middle Eastern population, nasal bone length, nasal bone thickness


How to cite this article:
Al Sharhan SS, Al Somali MI, Al Zahrani FS, Ashoor MM, Almarzouq SF, Almuhanna AF, Samarah AT. Nasal bone measurements in the middle eastern population based on radiological analysis: A cross-sectional retrospective study. Saudi J Otorhinolaryngol Head Neck Surg 2020;22:57-62

How to cite this URL:
Al Sharhan SS, Al Somali MI, Al Zahrani FS, Ashoor MM, Almarzouq SF, Almuhanna AF, Samarah AT. Nasal bone measurements in the middle eastern population based on radiological analysis: A cross-sectional retrospective study. Saudi J Otorhinolaryngol Head Neck Surg [serial online] 2020 [cited 2021 Apr 23];22:57-62. Available from: https://www.sjohns.org/text.asp?2020/22/2/57/305456




  Introduction Top


It is important to understand the proper anatomical landmarks for successful septorhinoplasty surgery.[1] However, radiological landmarks are often overlooked with surgeons basing their preoperative assessment on clinical and physical examinations. Moreover, there are insufficient radiological data regarding nasal bone morphology in the Middle Eastern population. Previous studies have proposed several methods for studying nasal dimensions, including clinical, photometric, cephalometric, and computed tomography (CT) scanning.[2],[3] We aimed to provide itemized measurements regarding the nasal bone morphology in the Middle Eastern population using maxillofacial CT imaging. Moreover, we aimed to highlight the importance of presurgery analysis of both clinical and radiological characteristics of the nasal bone morphology.


  Materials and Methods Top


Ethics

This study was approved by the Institutional Review Board (IRB) of King Fahad Hospital of University (KFHU) Hospital and Imam Abdulrahman Bin Faisal University. We obtained informed consent from all patients before their enrollment (IRB-2020-01-047). The experimental procedures were performed in accordance with the Helsinki Declaration of 1975, as revised in 2000.

Study population

We retrospectively and randomly included 276 patients who underwent maxillofacial CT between February and August 2019 from the KFHU archives. We only included patients aged above 18 years and reviewed their medical records. We excluded patients with a history of nasal surgery, facial trauma, or bone deformity, as well as patients with a Lund–Mackay CT score >2 on both sides, sinonasal masses, and nasopharyngeal pathologic findings. A trained rhinologist performed physical and endoscopic examinations in the otorhinolaryngology clinics according to a standardized procedure.

Radiological measurements

CT examination was performed using an Activion 64 CT Scanner (Toshiba Medical Systems, 2016, Japan). The CT parameters were 100–150 mA, 0.5-mm contiguous axial slice thickness, 120 kVp, 512 × 512 matrix size, and field of view of 240. We obtained multiplanar reconstructed (MPR) coronal and sagittal images. The measurements comprised the nasal deviation angle, lateral and intermediate nasal bone thickness, nasal bone length (NBL), and internasal angle.

The nasal deviation angle was measured on coronal MPR images as the angle between the most deviated septum point and the midline [Figure 1]. The nasal bone thickness was measured using axial cuts at the site of the lateral and intermediate osteotomy lines. Lateral and intermediate nasal bone thickness was measured at the nasomaxillary suture and the midpoint between the nasomaxillary suture and the rhinion, respectively [Figure 2].[4]
Figure 1: Reference lines on the axial and sagittal multiplanar reconstructed images were used to correct for the measurement plane (a and b). The nasal deviation angle was measured on coronal multiplanar reconstructed images as the angle between the most deviated septum point and the midline (c)

Click here to view
Figure 2: Measurement of nasal bone thickness measurement: (a) Intermediate nasal bone thickness (b) Lateral nasal bone thickness

Click here to view


The NBL was measured between the frontonasal suture and the nasal bone endpoint on the sagittal plane [Figure 3]. The internasal angle was measured on coronal images at the site of the nasion point [Figure 4]. All parameters were bilaterally measured except for the internasal angle.[4] by two qualified radiologists. Repeat measurements were obtained to ensure the interreader reliability.
Figure 3: Measurement of the nasal bone length in the right (a) and left side (b)

Click here to view
Figure 4: Reference lines on the axial and sagittal multiplanar reconstructed images were used to correct for the measurement plane (a and b). The internasal angle was measured on coronal images after the x- and y-planes were brought to the nasion point (c)

Click here to view


Statistical analysis

Data analysis was performed using IBM SPSS statistics for windows version 21 (IBM Corp., Armnok, N.Y., USA). All categorical variables were presented as the frequency and percentage, whereas quantitative variables were presented as mean, median, and standard deviation (SD). The Kolmogorov–Smirnov test was used to check the assumption of data normality. To compare the differences between two independent variables, we employed the Mann–Whitney U-test and Student's t-test for nonsymmetrical and symmetrical data, respectively. The Kruskal–Wallis test was used to compare more than two independent variables for nonsymmetrical data. One-way analysis of variance was used for symmetrical data. Chi-square test was used to compare the association between categorical variables. Statistical significance was set at P < 0.05.


  Results Top


We included 276 patients with a mean (± SD) age of 35.4 years (±13.2). Most patients (223 [80.8%]) were aged <50 years, and 140 (50.7%) and 136 (49.3%) patients were male and female, respectively [Table 1].
Table 1: Baseline characteristics of the participants (n=276)

Click here to view


[Figure 5] presents the direction of nasal septum deviation. Septum deviation to the left, right, and center was observed in 133 (48.2%), 118 (42.7%), and 25 (9.1%) cases, respectively. [Figure 6] presents the distribution of nasal angle deviation where the mean (± SD) angle was 11.4° (±5.8°). There was moderate, mild, and severe angle deviation in 126 (45.6%), 94 (34.1%), and 56 (20.3%) cases, respectively.
Figure 5: The direction of nasal septum deviation is presented

Click here to view
Figure 6: The distribution of nasal angle deviation is presented

Click here to view


There were no significant differences in the deviation direction with respect to age, sex, or deviation angle [P = 0.7, 0.8, and 0.4, respectively; [Table 2]. There were no significant differences among the septal deviation directions for all nasal morphology parameters [P > 0.05; [Table 3].
Table 2: Relationships between nasal deviation side and age, sex, and nasal deviation angle (n=276)

Click here to view
Table 3: Relationships between nasal morphology and septal deviation direction (n=276)

Click here to view


There were no significant between-sex differences in all nasal morphology parameters (P > 0.05), except for the right and left NBL. The mean (±SD) right and left NBL were significantly larger in men than in women (24.2 mm [±3.9]) versus (22.7 mm [±3.3]) (P = 0.001) and (24 mm [±4.1]) versus (22.6 mm [±3.5]) (P = 0.002), respectively; [Table 4].
Table 4: Relationship between nasal morphology and sex (n=276)

Click here to view


[Table 5] shows the comparison of nasal bone morphology between age groups (<50 and ≥50 years), which showed no significant differences (P > 0.05). There were no significant differences in the internasal angle, NBL, and lateral bone thickness between the groups based on the nasal septal deviation angle (P > 0.05). However, patients with severe nasal septal deviation angle had significantly lower left and right medial bone thickness (1.2 [0.7–4.4] and 1.15 [0.7–2.8], respectively), as well as the internasal angle 46.3° (±8.7°) (P < 0.05) [Table 6].
Table 5: Relationships between nasal morphology and age groups ≤50 and >50 years (n=276)

Click here to view
Table 6: Relationships between nasal morphology and nasal deviation angle

Click here to view



  Discussion Top


A deviated nasal septum is among the most common findings in otorhinolaryngology practice and accounts for 80% of anatomical variations among adults.[5] Performing septorhinoplasty surgery requires comprehensive knowledge of nasal morphology, as well as the factors affecting nasal bone shape, including age, sex, and ethnic variations. Improving knowledge regarding nasal bone morphology could facilitate surgery planning and the achievement of desirable and optimal outcomes. Moreover, there is an increasing interest in the racial differences and their effect on the nasal bone morphology among different populations. However, previous studies have primarily focused on the Western population with only a few studies assessing the Middle Eastern population. We did not observe a significant between-sex difference in the nasal bone thickness.[4] However, the NBL was significantly higher in men (mean NBL right: 24.2 mm, left: 24 mm) than in women (mean NBL right: 22.7 mm, left: 22.6 mm). This is consistent with the study by Karadag et al., who assessed eighty Turkish patients and reported that the NBL was 30.6 mm and 29.01 mm in men and women, respectively.[6] In addition, Kaplanoglu et al. studied the nasal bone morphology in the Turkish population with a large sample size and reported a mean NBL of 20.74 mm and 19.64 mm in men and women, respectively.[5] Lang and Baumeister reported that the mean NBL in Germans was 24.9 (±3.2) mm.[7] Ofodile et al. reported that the mean NBL in Austrians and African Americans was 30.2 mm and 27.9 mm, respectively.[8] Therefore, compared with previous reports, the NBL in the Saudi population is smaller than that in Austrians, African American, and Germans; however, it is longer than that in the Turkish population. Our findings are consistent with these previous findings, as well as with a previous study comparing clinical and radiological NBL measurements in a Middle Eastern population, which reported between-sex differences in the NBL. Specifically, clinical and radiological NBL measurements in men (25.0 mm [±3.1]) were longer than those in women (18.2 mm [±3.4]).[9]

Furthermore, we studied the proportions and correlations of age as a factor in nasal morphological patterns since aging could cause cartilage weakening and loss of support for the lower nose part.[10] We observed no significant differences in all the parameters of nasal bone morphology between the age groups of <50 and ≥50 years. This could be attributed to the fact that aging causes more loss of cartilaginous support than that of the nasal bone. However, there is a need for further studies on the older population to elaborate on the aging effect on nasal bone morphology. Moreover, with respect to nasal soft-tissue thickness, a previous study reported no between-sex difference in the nasal thickness over the nasion; moreover, it was negatively associated with age. Therefore, surgical planning should consider these variations, and there could be sex- and age-based differences in the findings.[11]

The nasal septal cartilage is a key midfacial growth center that influences facial skeleton ontogeny.[12],[13],[14],[15],[16],[17],[18] Moreover, it has been hypothesized that midfacial asymmetry is associated with deviated nasal septum. Kim et al.[19] studied the midfacial growth and asymmetry in patients with deviated nasal septum and found that differences in facial growth between the right and left side could affect the direction of nasal septal deviation. However, it is impossible to determine whether differences in facial growth between the right and left side cause septal deviation or whether septal deviation affects asymmetric facial growth or development. Our findings regarding the septum direction and severity of the nasal angle deviation indicated no significant difference between the septal deviation side and nasal bone thickness. This could be attributed to the large sample size and ethnic variations in the nasal bone morphology. However, individuals with severe angle deviation showed a significantly low magnitude of medial bone thicknesses and internasal angle, which indicated that the severity of nasal angle deviation could affect the nasal bone thickness. However, it remains unclear whether the deviation causes asymmetry. Serifoglu et al. reported lower nasal bone thickness on the contralateral side of a deviation than on the opposite side; moreover, the NBL and nasal bone thickness were affected by the septal deviation side.[4] The main limitation of this study is that the measurements were manually obtained; moreover, repeated measurements were obtained by two independent observers to reduce error. Moreover, this was a single-center study and may not be representative of other regional populations.


  Conclusion Top


Our findings indicate significant between-sex differences in the nasal bone morphology. Furthermore, we observed no side predilection for deviated nasal septum and nasal bone thickness. However, individuals with severe deviated nasal septum had low medial nasal bone thickness, which may be attributed to ethnic variations in the Middle Eastern population. This study provided itemized measurements regarding nasal bone knowledge as the baseline data for the Middle Eastern population. These include age, sex, and ethnic variations based on precise preoperative CT measurements of the bony nasal pyramid. Our findings could be employed as valuable references for improving the accuracy and reliability of planning septorhinoplasty procedures.

Acknowledgments

We would like to thank Editage for English-language editing.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Azizzadeh B, Reilly M. Dorsal hump reduction and osteotomies. clin Plast Surg 2016;43:47-58.  Back to cited text no. 1
    
2.
Guyuron B. Precision rhinoplasty. Part I: The role of life-size photographs and soft-tissue cephalometric analysis. Plast Reconstr Surg 1988;81:489-99.  Back to cited text no. 2
    
3.
Doddi NM, Eccles R. The role of anthropometric measurements in nasal surgery and research: A systematic review. Clin Otolaryngol 2010;35:277-83.  Back to cited text no. 3
    
4.
Serifoglu I, Oz İİ, Damar M, Buyukuysal MC, Tosun A, Tokgöz à–. Relationship between the degree and direction of nasal septum deviation and nasal bone morphology. Head Face Med 2017;13:3.  Back to cited text no. 4
    
5.
Kaplanoglu H, Coskun H, Toprak U. Computed tomography evaluation of nasal bone and nasal pyramid in the Turkish Population. J Craniofac Surg 2017;28:1063-7.  Back to cited text no. 5
    
6.
Karadag D, Ozdol NC, Beriat K, Akinci T. CT evaluation of the bony nasal pyramid dimensions in Anatolian people. Dentomaxillofac Radiol 2011;40:160-4.  Back to cited text no. 6
    
7.
Lee SH, Yang TY, Han GS, Kim YH, Jang TY. Analysis of the nasal bone and nasal pyramid by three-dimensional computed tomography. Eur Arch Otorhinolaryngol 2008;265:421-4.  Back to cited text no. 7
    
8.
Ofodile FA. Nasal bones and pyriform apertures in blacks. Ann Plast Surg 1994;32:21-6.  Back to cited text no. 8
    
9.
Alharethy S, Aldaghri F, Mesallam TA, Farahat M, Bukhari MA. Nasal bone length in Saudi rhinoplasty: A clinical-radiological study. Ann Saudi Med 2014;34:65-7.  Back to cited text no. 9
    
10.
Stupak HD, Johnson J, Calvin M. Rhinoplasty for the aging nose. Ear Nose Throat J 2006;85:154-5.  Back to cited text no. 10
    
11.
Alharethy S, Alohali S, Alquniabut I, Jang YJ. Bone and soft tissue nasal angles discrepancies and overlying skin thickness: A computed tomography study. Aesthetic Plast Surg 2018;42:1085-9.  Back to cited text no. 11
    
12.
Foster A, Holton N. Variation in the developmental and morphological interaction between the nasal septum and facial skeleton. Anat Rec (Hoboken) 2016;299:730-40.  Back to cited text no. 12
    
13.
Catala A, Johnston L. Interstitial growth of septal cartilage in the young albino rat. J Dent Res 1980;59:1453-6.  Back to cited text no. 13
    
14.
Copray JC. Growth of the nasal septal cartilage of the rat in vitro. J Anat 1986;144:99-111.  Back to cited text no. 14
    
15.
Holton NE, Franciscus RG, Marshall SD, Southard TE, Nieves MA. Nasal septal and premaxillary developmental integration: Implications for facial reduction in Homo. Anat Rec (Hoboken) 2011;294:68-78.  Back to cited text no. 15
    
16.
Latham RA. Maxillary development and growth: The septo-premaxillary ligament. J Anat 1970;107:471-8.  Back to cited text no. 16
    
17.
Scott JH. The cartilage of the nasal septum. Br Dent J 1953;95:37-43.  Back to cited text no. 17
    
18.
Wealthall RJ, Herring SW. Endochondral ossification of the mouse nasal septum. Anat Rec A Discov Mol Cell Evol Biol 2006;288:1163-72.  Back to cited text no. 18
    
19.
Kim YM, Rha KS, Weissman JD, Hwang PH, Most SP. Correlation of asymmetric facial growth with deviated nasal septum. Laryngoscope 2011;121:1144-8.  Back to cited text no. 19
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1007    
    Printed22    
    Emailed2    
    PDF Downloaded68    
    Comments [Add]    

Recommend this journal